The SST pattern effect on OLR: the role of large-scale convective aggregation

Reported by: Heng Quan (<u>hengquan@princeton.edu</u>)

Princeton University, Atmospheric and Oceanic Sciences Program Jun. 5th

Collaborators: Stephan Fueglistaler, Bosong Zhang, Chenggong Wang

The SST pattern effect – shortwave radiation

The SST pattern effect – shortwave radiation

The SST pattern effect – longwave radiation

The SST pattern effect – longwave radiation

Cloud-resolving model - SAM 2-D (x-z) mock Walker circulation Prescribed linear SST Perturb ΔSST

RH(x, z) for different ΔSST

Cloud-resolving model - SAM 2-D (x-z) mock Walker circulation Prescribed linear SST Perturb ΔSST

RH(x, z) for different ΔSST

z (km)

Cloud-resolving model - SAM 2-D (x-z) mock Walker circulation Prescribed linear SST Perturb ΔSST

Large-scale convection aggregation is important for climate change

1. Historical (1980-2010) SST pattern effect on OLR is comparable to reflected shortwave radiation because of convection aggregation strengthening.

2. The non-additivity error in the SST Green's Functions approach is explained by the non-additivity of convection aggregation.

uniform: GFDL-AM4, uniform SST+4K historical: SST perturbation = 1980 - 2010 SST trend × 30yr

uniform: GFDL-AM4, uniform SST+4K historical: SST perturbation = 1980 - 2010 SST trend × 30yr

Tropical (30°S ~ 30°N) average responses, normalized to 1K mean surface warming

		$\frac{dSW_{up}}{d\overline{T_s}}$	$\frac{dOLR}{d\overline{T_s}}$	$\frac{d\boldsymbol{T_{500}}}{d\boldsymbol{\overline{T_s}}}$	$\frac{dLCC}{d\overline{T_s}}$	$\frac{dCRH}{d\overline{T_s}}$	$\frac{dHCC}{d\overline{T_s}}$
	uniform	-0.21	1.69	1.44	-0.46%/K	0.27%/K	-0.19%/K
	historical	1.72	3.14	1.95	1.51%/K	-0.62%/K	-1.10%/K
	difference	+1.93	+1.45	+0.55	+1.97%/K	-0.89%/K	-0.91%/K
(historical – uniform)			500hPa T	Low cloud	Column RH	High cloud	

uniform: GFDL-AM4, uniform SST+4K historical: SST perturbation = 1980 - 2010 SST trend × 30yr

Tropical (30°S ~ 30°N) average responses, normalized to 1K mean surface warming

		$\frac{dSW_{up}}{d\overline{T_s}}$	$\frac{dOLR}{d\overline{T_s}}$	$\frac{d\boldsymbol{T_{500}}}{d\boldsymbol{\overline{T_s}}}$	$\frac{dLCC}{d\overline{T_s}}$	$\frac{dCRH}{d\overline{T_s}}$	$\frac{dHCC}{d\overline{T_s}}$
	uniform	-0.21	1.69	1.44	-0.46%/K	0.27%/K	-0.19%/K
	historical	1.72	3.14	1.95	1.51%/K	-0.62%/K	-1.10%/K
	difference	+1.93	+1.45	+0.55	+1.97%/K	-0.89%/K	-0.91%/K
(historical – uniform)			500hPa T	Low cloud	Column RH	High cloud	

uniform: GFDL-AM4, uniform SST+4K historical: SST perturbation = 1980 - 2010 SST trend × 30yr

Tropical (30°S ~ 30°N) average responses, normalized to 1K mean surface warming

		$\frac{dSW_{up}}{d\overline{T_s}}$	$\frac{dOLR}{d\overline{T_s}}$	$\frac{d\boldsymbol{T_{500}}}{d\boldsymbol{\overline{T_s}}}$	$\frac{dLCC}{d\overline{T_s}}$	$\frac{dCRH}{d\overline{T_s}}$	$\frac{dHCC}{d\overline{T_s}}$
	uniform	-0.21	1.69	1.44	-0.46%/K	0.27%/K	-0.19%/K
	historical	1.72	3.14	1.95	1.51%/K	-0.62%/K	-1.10%/K
	difference	+1.93	+1.45	+0.55	+1.97%/K	-0.89%/K	-0.91%/K
(historical – uniform)			500hPa T	Low cloud	Column RH	High cloud	

Historical SST pattern effect on OLR due to convection aggregation

(Figures show historical – uniform)

Historical SST pattern effect on OLR due to convection aggregation

(Figures show historical – uniform)

Historical SST pattern effect on OLR due to convection aggregation

7/13

Large-scale convection aggregation is important for climate change

1. Historical (1980-2010) SST pattern effect on OLR is comparable to SWCRE because of convection aggregation strengthening.

2. The non-additivity error in the SST Green's Functions approach is explained by the non-additivity of convection aggregation.

The SST Green's functions (GF) approach

$$\Delta \bar{R} = \sum_{j} \frac{\partial \bar{R}}{\partial \text{SST}_{j}} \Delta \text{SST}_{j}$$

Dong 2019

The SST Green's functions (GF) approach

Dong 2019

AGCM \leftarrow SST warming in 4xCO₂ GCM

The SST Green's functions (GF) approach

 $\Delta \bar{R}(\Delta SST_1, \Delta SST_2, \dots) \neq \Delta \bar{R}(\Delta SST_1, 0, 0, \dots) + \Delta \bar{R}(0, \Delta SST_2, 0, \dots) + \cdots$

Question: Why is OLR response overestimated by linear sum?

Two-patch combination: Linear sum overestimates OLR

AM4, SST+4K perturbation in **two adjacent** tropical Pacific patches (37 combinations in total)

Two-patch combination: Linear sum overestimates OLR

AM4, SST+4K perturbation in **two adjacent** tropical Pacific patches (37 combinations in total)

Y: actual response $\Delta \overline{R} (\Delta SST_i, \Delta SST_j)$

Color: average SST of two patches

X: linear sum $\Delta \overline{R}(\Delta SST_i, 0) + \Delta \overline{R}(0, \Delta SST_j)$

Tropical rainfall Gini index: 0 < G(P) < 100If $\Delta G(P) > 0$:

- Precipitation more spatially uneven
- Convection more aggregated
- Zhang & Fueglistaler, 2020, GRL

Tropical rainfall Gini index: 0 < G(P) < 100If $\Delta G(P) > 0$:

- Precipitation more spatially uneven
- Convection more aggregated
- Zhang & Fueglistaler, 2020, GRL

two adjacent patches SST+4K

0.0

 $\Delta \overline{R_{lw}}'$ Y: actual 0.0 response $\Delta \overline{R'_{W}}$ Truth(Wm⁻²) -0.5 -1.0predictio -1.5 erro X: linear sum -2.0 -1.5-1.0-2.0-0.5 $\Delta \overline{R'_{lw}}$ Prediction(Wm⁻²)

two adjacent patches SST+4K

Why is convection aggregation response overestimated by linear sum?

- non-additivity in circulation response -
- Quan et al., 2024, under review -

Summary

Summary

Summary

Thanks!

Preprint & Contact me: <u>hengquan@princeton.edu</u> <u>https://heng-quan.github.io</u>

RH(x, z) for different ΔSST

32/13

Cloud condensate mixing ratio for different ΔSST

Linear sum overestimates TOA radiation responses

Gini index measures large-scale convection aggregation strength

single patch SST+4K $\Delta G(P)$ responses

Muller & Held, 2012

convection aggregation overestimation \leftarrow circulation overestimation

Longwave radiation response attributed to convection aggregation

 $\lambda_{\mathrm{ref}} \cdot \Delta \overline{T}$ due to mean surface warming

 $\Delta \overline{R_{lw}}'$ due to convection aggregation (dominant)

 $\Delta \overline{R_{\rm lw}} = \lambda_{\rm ref} \cdot \Delta \overline{T} + \Delta \overline{R'_{\rm lw}}.$

(single patch SST+4K)

 $\Delta \overline{R_{lw}}' \propto \Delta G(P)$

Stronger convection aggregation

- \rightarrow mid-troposphere drying & high cloud reduction
- \rightarrow Stronger longwave radiative cooling

Bony 2020, Wing 2020, Zhang 2021

More (/smaller) patches \rightarrow larger errors

Y: Prediction

error

X: Number of reconstruction patches

38/13

The failure of the Green's Functions approach

A	R	XX	
			SS SS
RA	90°E	90°W	

	AM4 Control	AM4 $4 \times CO_2$	GF reconstruct
tropical $G(P)$	43.9	42.0	74.3
$\overline{\text{MTH}}(\%)$	43.1	43.0	34.8
HCC(%)	37.8	37.5	30.2

The Green's Functions approach fails in AM4 $4xCO_2$ radiation reconstruction due to the overestimation of convection aggregation