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Abstract
As an intrinsic feature of daily surface air temperature (SAT) variability found in station measurements, temporal asymmetry 
(TA) can be taken as an evaluation metric to access the quality of SAT re-analysis product. In this study, TA calculated from 
four SAT variables, i.e., daily mean SAT (Tmean), daily maximum SAT (Tmax), daily minimum SAT (Tmin) and diurnal tem-
perature range (TDTR = Tmax − Tmin), is applied to evaluate synoptic-scale performance of four reanalysis products (NCEP-2, 
JRA-55, ERA-I, and ERA-5) over China. The results show that four re-analyses overall overestimate the TA of daily Tmax and 
Tmin variability over China, but with a comparatively consistent estimated TA for Tmean. Moreover, the TA of Tmean variability 
for these four re-analyses shares high spatial consistency with those from the observation. However, four re-analyses own the 
similar region-dependent spatial patterns of overestimated TA for Tmax and Tmin variability, especially for Tmax. Since high 
TA is an indicator for strong nonlinear feature, only Tmean reanalysis is the most suitable to explore synoptic-scale extreme 
events, such as heat waves and cold waves, which are highly related to the strong nonlinear processes.

1  Introduction

Asymmetric phenomena are ubiquitous in both natural and 
social sciences (Heinrich 2004; King 1996; Livina et al. 
2003; Ashkenazy and Tziperman 2004; Lisiecki and Raymo 
2005; Bartos and Jánosi 2005; Gyure et al. 2007; Ashkenazy 
et al. 2008, 2016; Bisgaard and Kulahci 2011; Xie et al. 
2016, 2019), and it is an important indicator of nonlinear 
underlying processes (Schreiber and Schmitz 2000; Bartos 
and Jánosi 2005; Gyüre et al. 2007; Ashkenazy et al. 2008; 
Roldan and Parrondo 2010; Lacasa et al. 2012).

As a kind of asymmetry, the temporal asymmetry (TA) in 
time series, defined by different statistics between forward 
and backward (reversed) directed series, plays an impor-
tant role in air temperature variability studies (Bartos and 
Jánosi 2005; Gyüre et al. 2007; Ashkenazy et al. 2008; Xie 
et al. 2016, 2019). Previous studies also found that there 
exists differential TA among different temperature variables’ 
daily fluctuations over China from both station observa-
tions and NCEP-2 re-analyses (Xie et al. 2019). For com-
monly used temperature variables, daily mean 2-m surface 
air temperature (SAT, Tmean), daily maximum SAT (Tmax), 
daily minimum SAT (Tmin), and diurnal temperature range 
(TDTR = Tmax − Tmin), TA strengths among these four tem-
perature variables are markedly different with the weakest 
TA for DTR and the strongest TA for Tmean. Compared with 
the TA from station observations, TA from Tmax and Tmin 
in National Centers for Environmental Prediction (NCEP) 
AMIP-II Reanalysis (hereafter NCEP-2, Kanamitsu et al. 
2002) is highly overestimated for most regions over China 
(Xie et al. 2019).

TA has been found to be an intrinsic feature in daily SAT 
variability in station measurements (Bartos and Jánosi 2005; 
Gyüre et al. 2007; Xie et al. 2016, 2019; Li et al. 2021). 
Although similar TA behavior was also reported in re-anal-
ysis data (Ashkenazy et al. 2008; Xie et al. 2019; Li et al. 
2021), only a few studies (Xie et al. 2019; Li et al. 2021) 
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compared TA difference between station measurement and 
re-analysis products, detailed and systematic comparative 
studies are still required. More specifically, is it a univer-
sal feature to different kinds of re-analyses for the reported 
overestimated TA in Tmax and Tmin variability from NCEP-2 
re-analyses over China (Xie et al. 2019; Li et al. 2021)? If 
the answer is yes, is there any spatial consistency among 
different reanalysis products?

The reanalyzed products are outputs from the assimilation 
technology of numerical weather prediction to restore the 
observation data and compensate for the lack of uneven dis-
tribution of weather stations (Bengtsson and Shukla 1988; 
Trenberth and Olson 1988; Chen and Liu 2016). Previous 
studies used different methods to compare and evaluate rea-
nalysis data at different temporal and spatial scales from the 
point of view of mean value, standard deviation, long-term 
trend, long-range correlation (LRC), and so on, and they 
found re-analyses do not always work well to reproduce con-
sistent results with observations (Flocas et al. 2005; Ma et al. 
2008; Pitman and Perkins 2009; Mao et al. 2010; Marques 
et al. 2010; Mooney et al. 2011; Alfred et al. 2011; You 
et al. 2011, 2013; Cornes and Jones 2013; Chen and Iwa-
saki 2014; Taguchi 2017; Zhu et al. 2017; He et al. 2018; 
Alghamdi 2020). For example, He and Zhao (2018) evalu-
ated the air temperature reanalysis variables by means of 
LRC, and they found that NCEP-2 reanalysis overestimates 
LRC over some specific regions. Zhu et al. (2017) revealed 
that Interim European Centre for Medium-Range Weather 
Forecasts (ECMWF) Re-Analysis (ERA-Interim, herein 
ERA-I, Dee and Coauthors 2011) can capture the intensity 
indices of the continuous extreme temperature events, but 
not their frequency indices. Since TA is closely related to 
the synoptic-scale processes (Ashkenazy et al. 2008; Xie 
et al. 2016; Li et al. 2021; Quan et al. 2021) and nonlinear 
behaviors (Li et al. 2021), behaviors like extreme tempera-
ture events found in ERA-I should also be able to be revealed 
by TA.

Besides NCEP-2 reanalysis and ERA-I, other commonly 
used reanalysis products are available: the 55-year Japanese 
Project (hereafter JRA-55, Ayataka et al. 2011; Kobayashi 
et al. 2015), and the Fifth generation ECMWF Re-Analysis 
(hereafter ERA-5, Radu et al. 2018; Hersbach et al. 2020). 
These four reanalysis products will be exploited to test 
whether there are universal conclusions on TA related to 
SAT variability.

Moreover, Ye and Hsieh (2008) found that increasing 
nonlinearity in ENSO and Lorenz systems can enhance 
their predictability by improving the contributions from the 
low-frequency variations. The process-dependent intrinsic 
predictability is also reported to be enhanced with increased 
nonlinearity (Huang and Fu 2019). As one kind of nonlin-
earity, overestimated TA in the NCEP-2 reanalysis daily 
minimum and maximum air temperature anomaly series over 

China is concurrent with overestimated intrinsic predictabil-
ity, prediction skill, and the occurrence number of extreme 
events (Li et al. 2021). This finding indicates that overesti-
mated TA in reanalysis products may distort the conclusions 
on extreme event studies. By comparing the TA calculated 
from the station observations of different SAT variables to 
those from different reanalysis products, the most suitable 
SAT variable and the corresponding reanalysis products to 
estimate TA can be determined.

The paper is organized as follows. Section 2 summarizes 
the sources of observation and reanalysis data and the meth-
ods used in this study. Section 3 reports the overestimated 
TA in both Tmax and Tmin from observations and re-analyses, 
contrasting to the comparable consistency in TA for Tmean. 
And quantitative comparison of TA between observations 
and re-analyses for four different SAT variables is also pro-
vided. At last, Section 4 concludes this study with a brief 
discussion.

2 � Data and methods

2.1 � Data

2.1.1 � Observations

The observational time series (hereafter observations) of 
Tmean, Tmax, Tmin, and TDTR were downloaded from China 
Meteorological Administration. After data quality check by 
removing the time series with missing points, datasets of 
643 Chinese meteorological stations were finally selected 
for this study, covering a total of 40 years from 1979 to 2018.

2.1.2 � Reanalysis

For the reanalysis data of 2-m air temperature from 1979 to 
2018, we selected four commonly used products: NCEP-2 
(Kanamitsu et  al. 2002), JRA-55 (Ayataka et  al. 2011; 
Kobayashi et al. 2015), ERA-Interim (Dee and Coauthors 
2011) and ERA-5 (Radu et al. 2018; Hersbach et al. 2020). 
NCEP-2 products were acquired from the National Oceanic 
and Atmospheric Administration (NOAA) and its website 
at http://​www.​esrl.​noaa.​gov/​psd. JRA-55 is produced by the 
Japan Meteorological Agency (JMA) (https://​clima​tedat​agu-
ide.​ucar.​edu/​clima​te-​data/​jra-​55). From the ECMWF’s web-
site: https://​www.​ecmwf.​int/​en/​forec​asts/​datas​ets/​browse-​
reana​lysis-​datas​ets, both ERA-I and ERA-5 are downloaded. 
Detailed information about these four reanalysis datasets is 
shown in Table 1.

Previous studies found that topography, altitude, and 
sparse station are the main factors affecting the quality of 
reanalysis data (Rusticucci and Kousky 2002; Wang et al. 
2015; Zhao et al. 2018; He and Zhao 2018). Due to the 
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sparse stations in Tibetan region, we removed the stations 
over Tibetan regions and only evaluated the quality of the 
reanalysis data by using observations from the rest of the 
stations over China except Tibetan regions.

In this study, all referred time series are standardized by 
removing the annual cycle (Koscielny-Bunde et al. 1998) by 
T �
i
= Ti − ⟨Ti⟩, i = 1,… ,N , where Ti is any given daily air 

temperature variables, 〈Ti〉 is its long-time average for each 
calendar day, T ′

i
 is the corresponding anomaly, and N is the 

data length.

2.2 � Methods

2.2.1 � Interpolation for reanalysis

In order to compare TA measures calculated from the four 
reanalysis products with different spatial resolutions to those 
from station observations, we interpolated the two-dimen-
sional gridded data into the corresponding observation sta-
tions (hereafter interpolated reanalysis). Two widely used 
methods in previous studies were adopted: Gaussian weight 
function (Maddox et al. 1981; Xie et al. 2019) and interpola-
tion by directly choosing the closest grid point to represent 
the targeted station (Diaconescu et al. 2018; Pendergrass and 
Knutti 2018; Yang et al. 2020).

For Gaussian weight function, the interpolated reanalysis 
is given by

where s(i, j) is the targeted variable over grid (i, j) and the 
weight function w(i, j) is:

where C is the weighting constant, the Euler distance d 
is from the grid point (i, j) to the location of the specific 
station. For the reanalyzed data with different resolutions, 
detailed numerical calculations found that the smaller value 
C (for example C = 0.5 or C = 1.0) within a certain range 
can produce reliable interpolations.

(1)Res =

∑
i

∑
j w(i, j)s(i, j)∑
i

∑
j w(i, j)

,

(2)w(i, j) = exp

(
−d2(i, j, k)

4C2

)
,

2.2.2 � Measuring temporal asymmetry of time series

Different methods have been proposed and applied to meas-
ure the TA strength of air temperature variations (Xie et al. 
2016, 2019; Zhang et al. 2019; Li et al. 2021). Zhang et al. 
(2019) compared several TA measure methods and found all 
of them perform nearly equally well for most of cases. For 
simplicity, the asymmetry index (A) is adopted to quantify 
the TA strength in the air temperature anomaly T ′

i
 , which is 

defined as the ratio of positive air temperature variability 
steps to the total (positive plus negative) steps (Ashkenazy 
et al. 2008):

where 𝜃(x) =
{

1, x > 0

0, x < 0
 , N is the length of T ′

i
. When the 

value of TA is smaller than 0.5 (A < 0.5), it indicates that the 
air temperature warms rapidly and gradually becomes cold. 
The value of TA is larger than 0.5 (A > 0.5) indicates that the 
air temperature rapidly cools and gradually warms. When 
the value of TA is close to 0.5 (A ≈ 0.5), the air temperature 
time series are symmetric.

2.2.3 � Significance test

To carry out the significance tests, the iterative amplitude 
Fourier transform (IAAFT) is employed to generate surro-
gates for each time series by keeping the two-point correla-
tion and probability density function as those from the origi-
nal series. Taken Tmean anomaly time series as an example, 
we generate 500 surrogate series for it, and calculate A by 
means of Eq. (3) for each surrogate to obtain 500 values for 
A. Sorting these 500 values for A can define the lower 1% 
levels and the upper 99% among these 500 values of A as 
the significance thresholds. And then two thresholds of Ac1 
and Ac2 can be obtained. When the calculated value of A for 
a given series is lower than Ac1 or higher than Ac2, then this 
given series is taken to be statistically significantly temporal 
asymmetric. Such significance test through IAAFT surrogate 
can ensure that our results are not artificially influenced by 

(3)

A =
p

p + n
=

∑i=N−1

i=1
�
�
T �
i+1

− T �
i

�

∑i=N−1

i=1
�
�
T �
i+1

− T �
i

�
+
∑i=N−1

i=1
�
�
−
�
T �
i+1

− T �
i

�� ,

Table 1   Details of the four 
reanalysis datasets used in this 
study

3D-Var or 4D-Var 3-dimensional or 4-dimensional variational data assimilation.

Dataset Horizontal resolution Output frequency Assimilation method Source

NCEP-2 1.875° × 1.904° 6-hourly for analyses 3D-Var NOAA
JRA-55 1.25° × 1.25° 6-hourly for analyses 4D-Var JMA
ERA-I 0.75° × 0.75° 6-hourly for analyses 4D-Var ECMWF
ERA-5 0.5° × 0.5° Hourly throughout 4D-Var ensemble ECMWF

755Evaluation of re-analyses over China based on the temporal asymmetry of daily temperature…



1 3

stochastic effects, the autocorrelation and probability distri-
bution of a time series (Huang et al. 2020).

3 � Results

3.1 � Overestimated temporal asymmetry in Tmax 
and Tmin

First of all, the estimated temporal asymmetry (TA) for four 
SAT variables’ variability from the observations is com-
pared with those from four kinds of re-analyses, and detailed 
results are presented in Fig. 1. Here, the determination of 
overestimation or underestimation should be based on the 
statistical significance test. For each estimated TA, there is 
an interval from the significance test to judge whether it is 
overestimated or underestimated. The critical values at the 

significance level of 0.02 are shown as the lines on both 
sides of the 1:1 line in Fig. 1. Only outside of the critical 
lines, the estimated TA can be taken as significantly overes-
timated or underestimated at the significance level of 0.02. 
The marked results are that nearly all values of estimated TA 
in Tmax and Tmin from all four re-analyses are overestimated 
(see Fig. 1b, c), especially in Tmax, only a few from NCEP-2 
reanalysis are comparable with or lower than those from 
observations. This finding is consistent with previous studies 
in NCEP-2 reanalysis compared with limited station obser-
vations (Xie et al. 2019). Different from the results given by 
only one specific reanalysis product (NCEP-2), the results 
given here indicate that the overestimated TA in Tmax and 
Tmin from re-analyses may be taken as a common intrinsic 
feature to all analyzed reanalysis products.

Secondly, overestimated TA in both Tmax and Tmin from 
all four kinds of re-analyses has its well-defined spatial 
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Fig. 1   Temporal asymmetry scatter plots between observations and 
interpolated re-analyses for a Tmean, b Tmax, c Tmin, d TDTR from 1979 
to 2018. The two horizontal and vertical dash black lines denote the 
two critical thresholds for the confidence interval of A at the signifi-

cance level of 0.02, respectively. The dash cyan line denotes the 1:1 
diagonal line. The dash lines on both sides of the 1:1 line are the 
thresholds at a significance level of 0.02
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patterns (see Figs. 2 and 3). Especially for Tmax, four kinds 
of re-analyses share very similar spatial distribution of TA 
difference between observation and interpolated reanalysis, 
which is defined as Adiff = Are − Aobs with Are from reanaly-
sis and Aobs from observations. There are region-dependent 
spatial patterns of Adiff. Weak overestimated TA occupies 
most of the regions of China. However, there are still some 
special patterns. The consistent estimation of TA between 
observation and interpolated reanalysis mainly locates over 
northeast part of Heilongjiang Province and west part of 
both Yunnan and Sichuan Provinces. Among four kinds of 
re-analyses, the shared patterns of the strongest overesti-
mated TA lie in Guizhou and Chongqing provinces. These 
regions are also where the TA is not statistically significant 
in Tmax for observations (see Fig. 4f), but strong TA for four 
kinds of re-analyses (see Fig. 4g–j). According to studies 
on temperature asymmetry and the mechanism of tempera-
ture asymmetry (Ashkenazy et al. 2008; Piskala and Huth 
2020; Quan et al. 2021), the possible cause behind region-
dependent spatial patterns of Adiff is closely related to fron-
tal processes, and frontal processes have a strong regional 
dependence (Ashkenazy et al. 2008; Piskala and Huth 2020; 
Quan et al. 2021). This may be part of the reason for TA’s 
regional dependence, and the mechanism behind this phe-
nomenon deserves further study in depth.

For Tmin, no common national-scale spatial pattern of 
TA difference is shared among four kinds of re-analyses 
between observation and interpolated reanalysis over China 
(see Fig. 3). Only NCEP-2 and ERA-5 share the similar 
national-scale spatial distribution of overestimated TA (see 
Fig. 3a, d). However, only JRA-55 and ERA-I rather than 
NCEP-2 and ERA-5 share the similar spatial distribution 
of TA difference with an east-west dipole pattern. Over the 
half part of China east to 110° E, nearly all values of TA are 
overestimated, whereas over the another half part of China 
west to 100° E, nearly all values of TA are weakly underes-
timated. The contrasting spatial patterns of TA in Tmin are 
mainly due to the weak TA strength in observations (see 
Fig. 5a) but strong TA strength in Central parts of China in 
four kinds of re-analyses (see Fig. 5b–e). At the same time, 
contrast topography and possible related specific procedures 
adopted by JRA-55 and ERA-I reanalysis products (Pinheiro 
et al. 2020) may contribute to TA difference with an east-
west dipole pattern in Tmin.

Besides the almost identical patterns of TA difference 
for Tmin, JRA-55, and ERA-I also share almost the same TA 
patterns for all temperature variables (Tmean, Tmax, Tmin, and 
TDTR), details can be found in Fig. 4c, d, h, and j; Fig. 5c, 
d, h, and j. The similarity between ERA-I and JRA-55 re-
analyses on synoptic-scale phenomena has been reported in 

Fig. 2   Spatial distribution of A difference in Tmax from 1979 to 2018 
between observation and interpolated reanalysis for a NCEP-2, b 
JRA-55, c ERA-I, and d ERA-5, the black asterisk indicates the con-

fidence interval for the same TA estimation between observation and 
interpolated reanalysis at the significance level of 0.02
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the literature. When Pinheiro et al. (2020) studied subtropi-
cal cut-off lows in the southern hemisphere, they found that 
the differences of track density between ERA-I and JRA-55 
are relatively small. They explained this similarity between 
ERA-I and JRA-55, as both of them used the same data 
assimilation systems (Pinheiro et al. 2020).

3.2 � Comparable estimation of temporal asymmetry 
in Tmean

Different from the markedly overestimated TA found in Tmax 
and Tmin, more consistent TA estimations are revealed in 
Tmean between observations and re-analyses (see Fig. 6). 
There are only a few stations (less than 1%) with strong 
overestimated TA, and nearly 50% of the stations have the 
same TA estimation for both observations and re-analyses 
from NCEP-2 and ERA-5 (see Fig. 6a, d). Moreover, nearly 
all values of estimated TA in Tmean from both observations 
and re-analyses are statistically significant at the significance 
level of 0.02 (only less than 2% stations in NCEP-2 have 
insignificant TA estimation). For clear view, the same criti-
cal thresholds based on the significance test from the sur-
rogated linear process (see details in 2.2.3 Significance test) 
are marked with vertical and horizontal black dotted lines 
in the scatter plot, as shown in Fig. 1. The lower value of 
the critical threshold Ac1 is 0.4925 and the upper value Ac2 
0.5074 (vertical and horizontal black dotted lines in Fig. 1a). 

Since nearly all values of A for the reanalysis products are all 
larger than these critical values (see Fig. 1a), nearly all the 
daily mean SAT variability takes the temporal asymmetric 
behaviors over China.

The regions of the strongest TA strength lie over cen-
tral and southeast regions of China, especially to the south 
of Qinling Mountains and to east of 105° E (see Fig. 4a). 
Over these regions, the variations of Tmean gradually warm 
and rapidly cool. Such a temporal asymmetry phenomenon 
occurring at mid-latitudes has been attributed to the differ-
ent contributions from the warm and cold fronts (Ashkenazy 
et al. 2008; Piskala and Huth 2020; Quan et al. 2021). Lower 
A is found in the Basin of Tarim, Qaidam and Sichuan, Yun-
Gui Plateau and northeast of China (see Fig. 4a). Surpris-
ingly, all four re-analyses can reproduce the high and low 
values of TA over these regions (see Fig. 6), and this is 
why there are more consistent TA estimations in Tmean (see 
Fig. 1a).

3.3 � TA spatial pattern similarity quantification

In order to quantify the TA spatial pattern similarity between 
observations and interpolated re-analyses, we adopt the Tay-
lor diagram (Taylor 2001) to compare it quantitatively. Three 
statistics most often used to quantify pattern similarity in 
Taylor diagram are the correlation coefficient between obser-
vations and interpolated re-analyses, defined as

Fig. 3   Same as Fig. 2 but for Tmin
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the root-mean-square (RMS) difference between observa-
tions and interpolated re-analyses standardized by the results 
from observations, defined as

(4)RCC =

∑n

i=1

�
ARa − ARa

��
Ao − Ao

�

n�ARa
�Ao

,

and the standard deviation of ARa standardized by Ao

(5)SRMS =

������
∑n

i=1

��
ARa − ARa

�
−

�
Ao − Ao

��2

n�2
Ao

,

Fig. 4   Spatial distribution of A in Tmean (left column) and Tmax (right 
column) from 1979 to 2018 between observation (a, f) and interpo-
lated reanalysis: NCEP-2 (b, g), JRA-55 (c, h), ERA-I (d, i), and 

ERA-5 (e, j). The black asterisk indicates the confidence interval with 
two critical thresholds AC1 = 0.4925 and Ac2 = 0.5074 for TA estima-
tion at the significance level of 0.02
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with n the number of stations,�Ao
 and �ARa

 are standard devi-
ation for A from observations and a specific interpolated 
reanalysis. For perfectly consistent TA estimations between 
observations and interpolated reanalysis over all considered 
regions over China, RCC​ = 1, SRMS =0 , and SSTD = 1.

(6)SSTD =
�ARa

�Ao

,
Taylor diagrams constructed from four kinds of interpo-

lated re-analysis and observations for TA of four SAT vari-
ability could more accurately evaluate the quality of differ-
ent reanalysis products for different SAT variables (Fig. 7). 
First of all, it should be pointed out that synoptic-scale 
performance of all analyzed re-analyses is not compara-
ble to their climate-scale performance. For Tmean, the four 
reanalysis products all perform the best among these four 

Fig. 5   Same as Fig. 4 but for Tmin (left column) and TDTR (right column)
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Fig. 6   Same as Fig. 2 but for Tmean

Fig. 7   Taylor diagram for a 
Tmean, b Tmax, c Tmin, d TDTR 
of A from observation and 
interpolated reanalysis. The 
black dot stands for the results 
calculated from observations, 
which serves as the reference. 
The radial distance from the 
origin is proportional to the 
standard deviation of a pattern 
normalized by reference pattern, 
the centered root mean square 
(RMS) difference between the 
reference and re-analyses is pro-
portional to their distance apart 
and the correlation between 
the reference and re-analyses is 
given by the azimuthal position 
of a given reanalysis
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SAT variables, and they are all located in a limited region 
in the Taylor diagram (see Fig. 7a). Especially ERA-I, 
ERA-5, and JRA-55 are nearly of the equally well perfor-
mance with the highest RCC value (around 0.8) and the 
lowest SRMS value (around 0.62), only NCEP-2 a little bit 
worse with the RCC value around 0.73 and SRMS value 
around 0.78. Four reanalysis products perform second well 
for Tmax among these four SAT variables (see Fig. 7b), 
among them, ERA-5 is the best with the RCC value around 
0.73 and SRMS value around 0.74 and NCEP-2 the worst 
with the RCC value around 0.4 and SRMS value around 
1.14. There are great discrepancies in TA estimation 
between the observation and the interpolated re-analyses 
for both Tmin and TDTR (Fig. 7c, d), for all re-analyses, the 
RCC values are low (less than 0.5), and SRMS values are 
all high (larger than 0.99).

Moreover, Ye and Hsieh found (2008) that increasing 
nonlinearity in ENSO and Lorenz systems can enhance 
their predictability by improving the contributions from 
the low-frequency variations. As a kind of nonlinearity, 
temporal asymmetry in daily SAT variability is closely 
related to extreme events and some small-scale phenomena 
(Raghavendra et al. 2018; Li et al. 2021). More comparable 
TA estimation between observations and re-analyses leads 

daily mean surface temperature reanalysis products to be the 
most suitable choice to synoptic-scale extreme event study.

4 � Discussion and conclusion

In order to directly compare the TA from observation with 
those from reanalysis, the grid reanalysis data have been 
interpolated into the targeted station to reach the interpolated 
reanalysis data. In previous studies, a number of interpola-
tion methods were proposed and applied to test the impacts 
of interpolations on the derived results (Maddox et al. 1981; 
Xie et al. 2019). Xie et al. (2019) found that if the suitable 
choice is made to the interpolation distance parameter C, 
interpolations do not change the TA calculations too much. 
We compared the effects from different methods and dif-
ferent choices of interpolation distance parameter C on the 
calculations of TA from the original and four interpolated 
reanalysis data, detailed results can be found in Fig. 8 and 
were summarized in Table 2. It is confirmed that if the suit-
able distance parameter is chosen, the estimation of TA is 
insensitive to the interpolations. Also the different interpola-
tion methods do not change the TA calculations too much. 
Especially, the estimation of TA from ERA-I and JRA-55 

Fig. 8   Probability density function (PDF) for A of Tmean from a 
NCEP-2, b JRA-55, c ERA-I, and d ERA-5 by different interpolation 
ways. Gau means the Gaussian weight function interpolation with 

different values of C (C = 1.5, green; C = 1.0, cyan; C = 0.5, blue), 
Method-2 represents interpolation by the closest points to the stations 
(red) and Grid-ori from original reanalysis (gray) shadow
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is more robust to the interpolation methods and choices of 
distance parameter (Fig. 8; Table 2).

As an important nonlinear indicator, temporal asymmetry 
of time series can be taken as an intrinsic feature of non-
linear time series. Similar results can be found in a simple 
nonlinear model, such Logistic map with a given regime 
(Figure not shown here). TA calculation from observation 
in daily mean surface air temperature variability over China, 
(Fig. 1a), having nearly totally statistically significant tem-
poral asymmetry leads it to be an intrinsic feature of daily 
surface air temperature variability. It can be taken as a met-
ric to access the quality of different daily SAT reanalysis 
products. Taking TA as an evaluation measure, four daily 
SAT reanalysis products (NCEP-2, ERA-I, ERA-5, JRA-55) 
are accessed. Compared with the observations, the four re-
analyses can consistently reproduce the TA in Tmean over 
South China. NCEP-2 underestimates the TA in Tmean over 
the northeast and central regions of China. JRA-55, ERA-I, 
and ERA-5 overestimate the TA in Tmean over the northwest 
and central regions. However, all four re-analyses universally 
overestimate the TA in Tmax and Tmin. These results are dif-
ferent from the findings by previous studies based on the 
linear view (Zhao et al. 2018; He and Zhao 2018). Due to 
the weak TA in the TDTR (see Figs. 1d and 5f–j), there are 
larger relative uncertainties in calculation and comparison 
of TA from the observations and reanalysis, so no conclusive 
results can be reached on TDTR.

It was reported that the modeled daily maximum tempera-
ture and daily minimum temperature are unsuitable for the 
study of extreme events such as heat waves due to the under-
estimated daily maximum or overestimated daily minimum 
temperature compared with observations (Raghavendra et al. 
2018). Based on the results of TA estimation from all four 
reanalysis products, we confirm that the nonlinear strength 
is highly overestimated in Tmax and Tmin from the re-anal-
yses. Since there is a close relation between nonlinearity 
and extreme events (Ye and Hsieh 2008; Li et al. 2021), 
results from daily maximum or minimum temperature re-
analyses may distort conclusions on extreme events such 
as heat waves and cold waves. On the contrary, the most 
comparable consistency of TA estimation in daily mean sur-
face air temperature variability from both observations and 
re-analyses make it to be a reasonable choice. Last but not 
least, detailed comparison among the TA results for seasonal 

(Figure not shown here) and all-year data (see Fig. 1) shows 
that all these conclusions given above are qualitatively 
similar with only minor quantitative differences among 
results for four seasons, i.e., the above conclusions are not 
season-dependent.
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