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Abstract

We analyse the European Center for Medium-Range Weather Forecasts

reanalysis temperature time series over China and find that daily mean tem-

perature at 850 hPa pressure level warms gradually and cools rapidly, which is

known as the asymmetry property. Previous studies pointed out that front

events contribute to this asymmetry property, but only presented indirect evi-

dences. Here, we confirm this conjecture with more convincing and direct evi-

dences. The time series of front events are obtained over China by an

improved objective front detection algorithm. The high Pearson correlation

between time series of monthly temperature asymmetry measure and time

series of monthly front events over some specific regions indicates they are

closely related to each other and front events indeed contribute to temperature

asymmetry. We discover that the North China Plain is a representative region

where front events contribute to temperature asymmetry significantly. Further

diagnostic analysis by temperature tendency equation shows that the asymme-

try of daily mean temperature series is due to the asymmetry between the fre-

quency and intensity (mainly the intensity of meridional nonlinear advection

term) of cold and warm fronts in North China Plain.
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1 | INTRODUCTION

The asymmetry property of diversified time series in atmo-
spheric science, which is one of the fundamental features
of weather and climate variations on Earth, has been con-
firmed in lots of previous studies, on time scales from mil-
lions of years to days. For example, glaciation phases lasted
longer than deglaciation phases during mid-Pleistocene
cycles (Tziperman and Gildor, 2003), El Niño events have
greater amplitude than La Niña events (Burgers and
Stephenson, 1999; Su et al., 2010) and zonal asymmetry
exists in both background state and forcing in the Madden–
Julian oscillation and sudden stratospheric warming tele-
connection mechanism (Kang and Tziperman, 2018).

The asymmetry property of time series often implies
nonlinear underlying dynamics (Bartos and J�anosi, 2005;
Lacasa et al., 2012); hence, studies on it can help us to bet-
ter understand nonlinear interactions among physical
processes. In this study, we focus on temporal asymmetry.
For a given process xt, if the statistical features of time
series xt in original and reversed order are significantly
different, then, xt is temporal asymmetric (Weiss, 1975).

Previous studies (Bartos and J�anosi, 2005; Gyüre et al.,
2007; Ashkenazy et al., 2008) have discovered that the
asymmetry property of daily mean temperature series,
which cools rapidly while warms gradually, is a common
phenomenon at the mid-latitudes. Recent studies (Xie
et al., 2016) on station measurements also confirm that
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such behaviour can be identified in most parts of China.
The distribution of temperature asymmetry (based on the
European Center for Medium-Range Weather Forecasts
[ECMWF] reanalysis, European Center for Medium-
Range Weather Forecasts reanalysis (ERA) for short) is
shown in Figure 1. It has been thought that such tempera-
ture asymmetry is mainly due to front events (Ashkenazy
et al., 2008; Piskala and Huth, 2020).

Ashkenazy et al. (2008) discovered that the intensity of
temperature asymmetry decreases when the time lag of
the series increases or the altitude rises, and almost disap-
pears at 500 hPa level or with time lag τ = 7 days at the
mid-latitudes. The highest altitude of front events is about
4.5 km (Trewartha, 1954) and frontal zones are unusual at
500 hPa level (Wallace and Hobbs, 2006). Moreover, the
time scale of temperature asymmetry approximately
equals to the time scale of front events (within 1 week)
(Ashkenazy et al., 2008). Therefore, the synoptic temporal
and spatial scale of temperature asymmetry is similar to
the synoptic temporal and spatial scale of front events.
However, these are only indirect evidences proving that
front events contribute to temperature asymmetry.

Statistics also showed that strong day-to-day tempera-
ture variations are often accompanied by front events at
the Praha–Karlov station (where front passage is recorded)
(Piskala and Huth, 2020), which also implies that front
events contribute to temperature asymmetry, but only
deals with relative percentages at a single station rather
than doing a regional diagnostic analysis.

Do front events contribute to daily mean temperature
asymmetry in a given region? How can we find regions
where front events contribute to temperature asymmetry
significantly? How do front events affect temperature
asymmetry in such regions? These questions have not
been answered well so far, and they are what we want to
solve in this study, with the help of the objective front
detection algorithm.

It should be pointed out that the studies on tempera-
ture asymmetry are of great importance. They not only
deepen our understanding about nonlinear interactions
among physical processes and features of extreme events,
but also benefit studies on other fields like health issues.
For example, some previous studies (Guo et al., 2011;
Cheng et al., 2014, 2016; Vicedo-Cabrera et al., 2015; Zhan
et al., 2017) discovered that strong temperature variation
between adjacent days can significantly increase mortality
and the chances of some diseases. Studying the mechanism
of temperature asymmetry, especially the mechanism of
asymmetry between strong temperature increases and
decreases, can help us to better evaluate the chances of dis-
eases through a dynamical prospective.

The rest of the paper is organized in the following
order. In Section 2.1, we will briefly describe the data
used in this paper. The measure of daily mean tempera-
ture asymmetry that we used and the improved objective
front detection algorithm are presented in Sections 2.2
and 2.3, respectively. Section 3 shows our major results,
including the identification of the representative region

FIGURE 1 The distribution of asymmetry measure G over China, based on daily mean temperature series with different lags at

different pressure levels. (a–c) 850 hPa, lag τ = 1, 4, 7 days; (d–f) 1,000, 700, 500 hPa, lag τ = 1 day [Colour figure can be viewed at

wileyonlinelibrary.com]
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where fronts contribute to temperature asymmetry signif-
icantly, by means of conditional mean approach and
Pearson correlation in Section 3.1; and the diagnostic
analysis about how fronts contribute to temperature
asymmetry in Section 3.2. Finally, in Section 4, conclu-
sions and further discussions are made.

2 | DATA AND METHODS

2.1 | Data

The dataset used in this article is from the ECMWF.
More specifically, we analyse its ERA-Interim dataset
(Dee et al., 2011). (We have repeated our study on the
ERA5 dataset and found that our results are quite similar
between them. The figures are not shown here.) The
length of the series is 40 years, from 1979 to 2018.
The region we concern covers inland China inside, which
is from 3� to 54�N, 72� to 138�E. The temporal resolution
is 6 hours, while the spatial resolution is 0.75�.

In this study, we use daily mean data unless specifi-
cally emphasized. It is achieved by simply calculating the
arithmetic mean of four consecutive instantaneous values
(at 0:00, 6:00, 12:00, 18:00, respectively) in the same day.

Following (Jenkner et al., 2010), a simple diffusive
smoothing procedure is applied to all variables and their
four direct neighbours to reduce the spatial noise of high-
resolution data and emphasize the feature of regions
rather than grid points:

τni,j=
1
2
τn−1
i,j +

1
8

τn−1
i+1,j+τn−1

i−1,j+τn−1
i,j+1+τn−1

i,j−1

� �
,n=1,2,…,nf

ð1Þ

The round of smoothing, nf, is set to be 15, which is
considered suitable for China after thorough tests.

2.2 | Asymmetry measure of
temperature series

Up to now, various measures of the temporal asymmetry
property have been developed, as reviewed in the recent
comparison study (Zhang et al., 2019). Some of those
measures include a symbolization process and then ana-
lyse the difference between the enciphered string in origi-
nal and reversed order (Daw et al., 2000), but they are
considered biased due to extra subjective arguments
(Lacasa et al., 2012). Therefore, measures without the
symbolization procedure are more objective and accurate,
like measures derived from directed horizontal visibility
graph (DHVG) (Luque et al., 2009; Lacasa et al., 2012)

and consecutive increasing and decreasing steps (CIDS)
(Xie et al., 2016). These two measures and the other three
measures listed below reach quite a consistent results
when measuring the asymmetry of daily mean tempera-
ture series (Zhang et al., 2019).

The measure we choose in this study is related to the
increments of series. The increment time series Δxi of a
series xi is xi+ τ − xi, given a specific lag τ (τ = 1 by default
unless specifically emphasized in this study). There are
three commonly used asymmetry measures, named
A (Ashkenazy et al., 2008), E (Ehlers et al., 1998), and
G (Guzik et al., 2006) respectively, based on the incre-
ment series:

A=
P

iθ Δxið ÞP
iθ Δxið Þ+P

iθ −Δxið Þ , ð2Þ

E=
P

i Δxið Þ3P
i Δxið Þ2� �3=2 , ð3Þ

G=
P

i Δxi �θ Δxið Þð Þ2P
i Δxið Þ2 , ð4Þ

where θ(x) = 1 for x > 0 and zero elsewhere.
Obviously, the measure A only takes the signs of con-

secutive increments Δxi into account, while E and
G consider both the signs and magnitude of Δxi.

For a 40-year-long daily mean temperature series,
when the temperature cools rapidly and warms gradually
(hence decrease is less frequent than increase), as com-
monly found at the mid-latitudes, A > 0.5. If A ≈ 0.5, then
the series is temporal symmetric. The closer A is to 0.5,
the more temporal symmetric the series is. Similarly,
when G ≈ 0.5 or E ≈ 0, then the series is temporal symmet-
ric. A > 0.5 usually accompanies G < 0.5 and E < 0.

We choose measure G as the measure of asymmetry
in this study. We find that the results from these three
measures are quite similar (the figures are not shown
here). We evaluate the intensity or significance of the
asymmetry property of a given time series by surrogate
method. More specifically, we randomly exchange two
values in the series for many (e.g., the length of the
series) times to get one surrogate series, and repeat this
procedure for 1,000 times to get 1,000 surrogate series.
For each of these 1,000 surrogate series, we calculate its
asymmetry measure G and sort the 1,000 values from the
smallest to the biggest. The 25th and 975th values in this
series constitute an interval. If the original series'
G measure lies out of the interval, then the null hypothe-
sis that the original series is temporal symmetric is
rejected, with a significant p-value less than .05.
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Here, we calculate the measure G of the 40-year-long
daily mean temperature series at each grid point in
China with different lags (τ = 1, 4 and 7 days) at different
pressure levels (1,000, 850, 700 and 500 hPa). The distri-
bution of measure G is shown in Figure 1.

Figure 1 clearly shows that the intensity of tempera-
ture asymmetry decreases when the lag increases or the
altitude rises, and almost disappears at 500 hPa level or
with lag τ = 7 days, which is consistent with previous
results given for Northern hemisphere (Ashkenazy et al.,
2008). Also, daily mean temperature at 1,000 and 850 hPa
levels share similar spatial patterns with gradual warming
and rapid cooling (since G < 0.5) in most parts of China
(except the Tibetan Plateau), and this asymmetry property
is stronger over southeast and northwest of China, which
agrees with results based on station measurements (Xie
et al., 2016).

2.3 | Objective front detection algorithm

Synoptic-scale fronts are very important to weather in the
mid-latitudes. Previous studies show that front events are
not only related to extreme weather like heavy rains and
extreme winds (Catto et al., 2012; Catto and Pfahl, 2013),
but also concurrent with other weather systems like
cyclones and thunderstorms (Dowdy and Catto, 2017). In
this study, we want to relate front events to day-to-day
temperature variability and its asymmetry property in
inland China, with the help of the objective front detec-
tion algorithm.

The objective front detection algorithm is a method to
objectively detect frontal regions in a given area at a cer-
tain moment and pressure level, using data from a
reanalysis dataset. More specifically, for each grid point
in a given region, we detect whether there is a front event
at that grid point; if the answer is yes, we should identify
whether it is a cold or warm front (more complicated
types of fronts ignored). Contiguous grid points with the
same kind of front constitute a frontal zone.

The objective front detection algorithm was first
invented in 1965 (Renard and Clarke, 1965), and has been
revised for many times (Huber-Pock and Kress, 1989;
Steinacker, 1992; Hewson, 1998; Mccann and Whistler,
2001; Jenkner et al., 2010; Berry et al., 2011; Schemm
et al., 2015). Traditional methods mentioned above
mainly identify fronts by checking several criteria from a
thermal perspective, while recently deep learning is
applied to improve the accuracy of objective front detec-
tion (Lagerquist et al., 2019). Now the objective front
detection algorithm is accurate and quite consistent with
subjective analyses. Here, we improve the traditional algo-
rithm to adapt to front detection in inland China.

As most traditional objective front detection algo-
rithms do, we first calculate the thermal front parameter
(TFP) for each grid point, which was first described in
(Renard and Clarke, 1965). The definition of TFP is:

TFP Tð Þ=−r rTj j rT
rTj j , ð5Þ

where T is temperature. Notice that some studies used
other variables (like potential temperature) instead of
temperature itself, but reached similar results
(Hewson, 1998).

TFP is used to locate potential frontal zones. It repre-
sents the gradient of the magnitude of the gradient of a
thermodynamic scalar quantity, resolved into the direc-
tion of the gradient of that quantity (Renard and Clarke,
1965). At first, Clarke indicated that TFP's ridgelines
(or maxima) are where front events probably lie, while a
later research showed that the zero contours of TFP field
are potential locations of fronts (Jenkner et al., 2010).
Here, we follow the latter approach.

In practice, if

TFP Tð Þ<K1, ð6Þ

we consider probably that there is a front at that grid
point. By this way, we get the potential frontal zones.

Next, we apply masking criteria to eliminate spurious
grid points in the potential frontal zones obtained above.
Only if all the masking criteria are satisfied can the grid
point be truly considered with the front at that moment.

The first masking criterion is:

rTj j>K2 ð7Þ

This is because temperature often changes steeply in
frontal regions.

The second masking criterion is:

v
!� rT

rTj j
����

����>K3>0, ð8Þ

where v
!
is horizontal wind velocity. This is because fron-

tal zones often have intense horizontal thermal advec-

tion. v
!� rT

rTj j>K3 means cold front (because wind heads

toward warmer place), while v
!� rT

rTj j<−K3 means warm

front.
After thorough tests, the arguments suitable for

China are: K1 = 0.00005 K � km−2, K2 = 0.016 K � k m−1,
K3 = 5 m � s−1. Changing the thresholds slightly will
bring slight changes to the frequency of cold and warm
fronts, but will not affect their relative frequency and

QUAN ET AL. 1831
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intensity. Therefore, our results are quite robust and not
sensitive to the thresholds in front detection algorithm.
Remember all variables have gone through the smooth-
ing procedure in Section 2.1.

The choice of the pressure level is an important fea-
ture of the detection algorithm. Different previous detec-
tion algorithms work at different pressure levels, which
are reviewed in (Hewson, 1998). In our study, we choose
850 hPa pressure levels. On the surface, orography brings
extra noise, especially given that China has very complex
terrain; on higher pressure levels (e.g., 700 or 500 hPa)
gradients of thermal variables are relatively small, hence,
our detection algorithm will not work.

Now, we illustrate this algorithm in Figure 2. It shows
the distribution of frontal zones (Figure 2a) and the three
criteria mentioned above (Figure 2b–d) on 21 November,
2020, at 0600 UTC. We successfully identify the cold front
event occurring then.

Our improved objective front detection algorithm is
not only accurate (ensured by comparison with manual

weather maps from the National Meteorological Center
in China, for example, our Figure 2a successfully detect
the cold front event shown in Figure 3), but also easier
and more convenient than previous algorithms.

3 | RESULTS

3.1 | Regions where front events
contribute to temperature asymmetry
significantly

Applying the improved objective front detection algo-
rithm, we can easily judge whether there is a front, and
whether it is a warm or cold front, in a certain day at a
given grid point. Since we want to calculate daily mean
temperature tendency in days with cold and warm front
and evaluate how they contribute to daily mean tem-
perature change, we ignore a few complicated days (less
than 1%) with the both cold and warm front passage at

FIGURE 2 The process of objective front detection algorithm for a typical case on 21 November, 2020, 0600 UTC, 850 hPa pressure

level. (a) Grid points meeting the three criteria constitute frontal zones. Here, only cold frontal zones (enclosed in solid thick lines) exist; (b)

distribution of the magnitude of temperature gradient. Criterion: rTj j > 0.016 K � km−1 (Eq. (7)); (c) zero contour of TFP. Criterion: TFPj j
<0.00005 K � km−2 (Eq. (6)); (d) distribution of horizontal wind velocity's projection to the direction of temperature gradient. Criterion:

v
! rT

rTj j
��� ��� > 5 m � s−1 (eq. (8)) [Colour figure can be viewed at wileyonlinelibrary.com]
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different moments. (If there are both cold and warm
fronts in a day, we cannot tell whether that day's tem-
perature change is caused by cold or warm front.)
Figure 4 is an example showing the result of our front
detection algorithm at 114�E, 40.5�N in some days, and
it makes sense that front events accompany strong tem-
perature changes. For each grid point, we can easily get
its time series of 40-year-long daily front events and cal-
culate its 40-year-average annual and monthly front
frequency.

First, we calculate the frequency distribution of front
events over China (measured by the number of days with
front events per year on average), see Figure 5. From
Figure 5, we can learn that cold fronts are frequent over
northeast and northwest of China, while warm fronts are
frequent over northeast and middle-south of China. The
metric bars also indicate that cold fronts are more fre-
quent than warm fronts in most parts of China. It should
be pointed out that the 850 hPa pressure level is below
the surface in the Himalayan region and wind velocity

FIGURE 3 (21 November, 2020,

0600 UTC) Manual front detection

result. The solid thick line with

triangles represents a cold front. This

figure is from National

Meteorological Center in China

[Colour figure can be viewed at

wileyonlinelibrary.com]

-15

-10

-5

0

5

10
i
 = T

i
 - T

i-1
 sequence, at 40.5°N,114°E, in Apr 1980

0 5 10 15 20 25 30 35

days since 1980-04-01

normal
cold front
warm front

FIGURE 4 Temperature increment

series ΔTi=Ti+1−Ti, at 114�E, 40.5�N, in
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front events, identified by our improved
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below the surface is generated by extrapolation, so front
detection results are meaningless there. Therefore, we
simply ignore this region. (If we do not mask Himalayan
region, it only has no more than four front events in
40 years, which is neglectable.)

Our results in Figure 5 are in agreement with a previ-
ous study focusing on objective front detection in inland
China (Zhou, 2018). Zhou also used ERA-Interim data
from 1979 to 2018. We preprocessed the data and present
our front climatology results in similar way as Zhou did.
He and our study used different front detection criteria
but reach similar results (Figure 5 is quite similar to fig-
ures 3.9 and 3.12 of Zhou (2018)).

Next, we test whether front events contribute to tem-
perature asymmetry in a given region by two methods.

The first method is the conditional mean approach
(Jajcay et al., 2016). We apply Fourier transform to the
time series of 40-year-long monthly front frequency
(480 points) at each grid point over China, and find that
most of them have a significant 12-month long period.
For each grid point, we calculate the 40-year-average
asymmetry measures G in 12 months (corresponding to
12 phases in front frequency cycles). Figure 6a shows the
monthly mean G series at 114E, 40.5�N. If front events do
not influence temperature asymmetry, the 12 conditional
means would approximately be the same.

Then, we test whether the maximum and minimum
values among the 12 conditional means are significantly
different. By shuffling method (similar to Section 2.2) we
get 1,000 surrogate monthly G series (480-point-long), and

calculate the range of monthly mean G series (12-point-
long) for each one. In Figure 6b, we present the histogram
of the 1,000 ranges at 114�E, 40.5�N. The thick dash line in
Figure 6b corresponds to a range larger than the thick solid
line, showing that the maximum and minimum values
among 12 conditional means in Figure 6a are significantly
different, with a p-value smaller than .05. Therefore, front
events do influence temperature asymmetry significantly at
114�E, 40.5�N. This test can be easily repeated at other grid
points.

The second method is to evaluate the correlation
between front events and temperature asymmetry. For
each grid point, we calculate its 40-year-average asym-
metry measures (as described in Section 2.2) of daily
mean temperature series for each month and get a
12-point-long monthly G time series (like Figure 6a at
114�E, 40.5�N). Similarly, we calculate its 40-year-
average days with the front in each month and get a
time series of monthly mean front frequency (like
Figure 6c at 114�E, 40.5�N). The Pearson correlation
between the two 12-point-long series is obtained (like
the thick dash line in Figure 6d at 114�E, 40.5

�
N), which

measures the intensity of correlation between front
events and asymmetry of daily mean temperature series
at this grid point.

Since G < 0.5 almost everywhere over China (see
Figure 1), the smaller G is, the more intense the asymme-
try feature is. So, if the valleys of G series are accompa-
nied by the peaks of the front frequency time series and
the former's valleys are accompanied by the latter's

FIGURE 5 The frequency distribution of front events over China, measured by days per year with (a) cold fronts; (b) warm fronts on

average [Colour figure can be viewed at wileyonlinelibrary.com]
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peaks, then, intense temperature asymmetry is accompa-
nied by frequent front events. Therefore, the closer the
correlation is to −1, the more likely front events contrib-
ute to temperature asymmetry.

Figure 7a shows the distribution of the Pearson corre-
lation between front events and temperature asymmetry.
Dark shading areas without dots (correlation close to −1)
in Figure 7a, like the North China Plain, Xinjiang

FIGURE 6 (a) Monthly mean time series of temperature asymmetry measure G at 114�E, 40.5�N; (b) the histogram of the ranges of

1,000 surrogate monthly mean G series at 114�E, 40.5�N. The thick solid line represents the 50th biggest range, which is also the p = .05

threshold. The thick dash line is the range of monthly mean G series at 114�E, 40.5�N in (a); (c) monthly mean time series of front events

frequency at 114�E, 40.5
�
N; (d) the histogram of the Pearson correlations between the 1,000 surrogate monthly mean G series and the

original monthly mean front frequency series in (c) at 114�E, 40.5�N. The two thick solid lines represents the 25th biggest and 25th smallest

value among the 1,000 correlations, which are also the p = .05 thresholds. The thick dash line represents the Pearson correlation between

the original monthly mean G series in (a) and the original monthly mean front frequency series in (c) at 114�E, 40.5
�
N [Colour figure can be

viewed at wileyonlinelibrary.com]

FIGURE 7 (a) Distribution of the Pearson correlation between monthly front frequency time series and monthly temperature

asymmetry time series. Dark shading areas without dots (correlation close to −1) are where we consider front events are likely to contribute

to temperature asymmetry; (b) the representative region in North China plain for further diagnostic study, selected by criteria in text [Colour

figure can be viewed at wileyonlinelibrary.com]
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Province and some regions in the south of China, are
where we consider front events are likely to contribute to
temperature asymmetry.

To test the significance of the Pearson correlation
between front frequency series and G series, we use the sur-
rogate method similar to Section 2.2. We apply the shuffling
procedure to G series for 1,000 times and get 1,000 surro-
gate series. For each, we calculate the Pearson correlation
between it and the front frequency time series, sort the
1,000 correlations in order (like the histogram in Figure 6d
at 114�E, 40.5�N), in which the 25th biggest and smallest
value constitute an interval (like the interval between the
two thick solid lines in Figure 6d at 114�E, 40.5�N). If the
original correlation (like the thick dash line in Figure 6d at
114�E, 40.5�N) exceeds this interval, the null hypothesis
that the two series are not related is rejected, with a signifi-
cant p-value less than 0.05. In those regions that the two
series are significantly and negatively correlated, we con-
sider front events contribute to temperature asymmetry
significantly.

Now, we select representative grid points for further
diagnostic study, based on the following criteria:

1. Fronts influence temperature asymmetry significantly
(confirmed by the conditional mean test, p = .05);

2. correlation in Figure 7a is significant and negative;
3. significant asymmetry measure G, as described in Sec-

tion 2.2;
4. more than 8 days with cold front per year on average;
5. more than 2 days with warm front per year on average.

The arguments in the last two criteria are somewhat sub-
jective, but our results depend only slightly on them.

Grid points (34 in total) meeting these criteria consti-
tute the region enclosed by the thick solid line in Figure
7b. It is a part of the North China Plain.

If we remove days with front events and calculate
the asymmetry measure G of the rest of the days without
front events, the asymmetric feature that temperature
warms gradually and cools rapidly will reverse (turn
from G < 0.5 originally to G > 0.5) in the representative
region. For example, we focus on the grid point at
114�E, 40.5�N, with G = 0.423 (significant). If we remove
all the temperature changes with front events in 40 years
in Figure 4 (solid lines with squares and triangles), then
G = 0.605 (significant) for the remaining temperature
changes without front events (dash lines with circles) in
40 years. This ensures that front events do contribute to
the asymmetry of strong temperature changes (as it is
shown in Figure 4, strong temperature changes are often
accompanied by front events). Also, there must be pro-
cesses other than front events that have opposite impacts
on the asymmetry of weak temperature changes.

3.2 | Diagnostic analysis: How do front
events contribute to temperature
asymmetry?

Now, we analyse how front events contribute to tempera-
ture asymmetry in the representative region in North
China Plain.

Since G < 0.5 means that temperature warms gradu-
ally and cools rapidly, it is natural to guess that cold
fronts are stronger than warm fronts, or in other words,
cold fronts cause severe cooling while warm fronts cause
mild warming. Actually, our results in Figure 8 confirm
this hypothesis. There are several factors contributing to
temperature change, like advection and radiation. What
is the dominant factor making cold fronts stronger than
warm fronts?

We refer to the temperature tendency equation com-
monly used in El Niño and Indian Ocean Dipole studies
(Li et al., 2002; An and Jin, 2004; Hong et al., 2008a,
2008b; Su et al., 2010):

∂T
∂t

=−v �rT+ −ω
∂T
∂p

+ω
κT
p

� �
+

J
cp

+R ð9Þ

This equation is simply derived from the first law of ther-
modynamics. When we analyse the factors contributing
to daily temperature's tendency at 850 hPa pressure level,

v
!

represents horizontal wind velocity, − v
!�rT is the

horizontal advection term, −ω ∂T
∂p is vertical advection

term, ωκT
p is the adiabatic expansion term where κ= Rd

cp
.

We add the two terms involving vertical velocity ω

together to get the vertical term −ω ∂T
∂p +ωκT

p

� �
. J
cp
is the

diabatic heating term (including sensible heat flux, latent
heat flux, shortwave radiation and longwave radiation)
and R is the residue term.

The advection term can also be decomposed:

v
!�rT= v

!�rT+ v
!�rT 0+ v0

!�rT
� �

+ v0
!�rT 0 ð10Þ

where (—) represents climatological annual cycle (CAC)
and (0) represents anomaly. The three terms on the right-
hand side of Eq. (10) are denoted as CAC, linear and
nonlinear advection terms, respectively.

For each grid point in the representative region, we
first calculate its average daily mean temperature ten-
dency in days with cold fronts and warm fronts (like the
solid lines with squares and triangles in Figure 4), and
then calculate the mean value of the tendency among all
such grid points. Next, we decompose the tendency by
Eqs. 9 and 10 to evaluate the contribution of each term.
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Figure 8 shows different terms contributing to tem-
perature tendency in days with cold and warm fronts in
the representative region in North China Plain.

From Figure 8, we know the following:

1. Average temperature tendency ∂T
∂t in days with cold

fronts is larger than in days with warm fronts.
Cold fronts let temperature cool rapidly while warm
fronts let temperature warm gradually. The intensity
of cold and warm fronts has asymmetry property simi-
lar to the asymmetry property of daily mean tempera-
ture (Figure 8a);

2. When we decompose temperature tendency ∂T
∂t in the

representative region according to Eq. (9), the hori-

zontal advection term − v
!�rT is dominant, while the

diabatic heating term J
cp

and residual term R are

ignorable. The vertical term −ω ∂T
∂p +ωκT

p

� �
is not

neglectable, but it does not contribute to the asymme-
try property that temperature warms gradually while
cools rapidly (actually it has the opposite effect)
because both warm fronts and cold fronts have a posi-
tive (on average) vertical term. In other words, the
asymmetric intensity of cold and warm fronts is
mainly due to the asymmetry of the horizontal advec-
tion term (Figure 8a);

3. When we decompose the advection term − v
!�rT

according to Eq. (10), the CAC term v
!�rT is ignor-

able, the linear term v
!�rT 0+ v0

!�rT
� �

of cold and

warm front are roughly equal, while the nonlinear

term v0
!�rT 0 of cold and warm front are significantly

asymmetric (Figure 8b);

4. Since v0
!�rT 0=u0 ∂T

0
∂x +v0 ∂T

0
∂y , the nonlinear advection

term can be further decomposed into meridional com-

ponent v0 ∂T
0

∂y and zonal component u0 ∂T
0

∂x . It is clear

that zonal components are roughly equal while merid-
ional components are asymmetric (Figure 8c).

Since the nonlinear advection term involves anomaly
rather than CAC variables, the asymmetric nonlinear
advection between cold and warm fronts implicates that
extreme cold fronts are much stronger than extreme
warm fronts in north China Plain. More specifically, that
is because the meridional component v0 ∂T

0
∂y of extreme

cold fronts is stronger.
This result is reasonable because cold waves are quite

prevalent in North China Plain. Cold waves in East Asia
are often accompanied by unexpected freezes, frosts and
intense northerly winds (Ding, 1990; Chen et al., 2002).

(a) Tendency decomposition

[K
.d

ay
-1
]

cold front
warm front

(b) Advection decomposition

cold front
warm front

(c) Nonlinear term decomposition

cold front
warm front

[K
.d

ay
-1
]

[K
.d

ay
-1
]

FIGURE 8 (a) Temperature tendency ∂T
∂t is decomposed into horizontal advection − v

!�rT, vertical term −ω ∂T
∂p +ωκT

p

� �
, diabatic

heating J
cp
and residual term R; (b) horizontal advection − v

!�rT is decomposed into CAC term − v
!�rT, linear advection term

− v
!�rT 0+ v0

!�rT
� �

and nonlinear advection term − v
!0 �rT 0; (c) nonlinear advection term − v

!0 �rT 0 is decomposed into zonal component

and meridional component [Colour figure can be viewed at wileyonlinelibrary.com]
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Therefore, it is likely that cold waves make cold fronts
stronger than warm fronts by contributing to intense
meridional component v0 ∂T

0
∂y of extreme cold fronts, while

there is no weather system prevalent in North China
Plain contributing to meridional nonlinear advection
v0 ∂T

0
∂y of extreme warm fronts. The prevalence of cold

waves can also explain the fact that cold fronts are much
more frequent than warm fronts in North China Plain
(see Figure 5).

4 | CONCLUSIONS
AND DISCUSSIONS

Here, we briefly summarize our results.

1. Daily mean temperature warms gradually and cools
rapidly (measure G < 0.5) in most parts of China (see
Figure 1);

2. Temperature asymmetry is significant due to front
events in some regions, and among them, we select
the North China Plain as a representative region for
diagnostic analysis (see Figure 7);

3. Cold fronts are more frequent than warm fronts in
North China Plain (see Figure 5);

4. Cold fronts are stronger (mainly due to stronger
meridional nonlinear advection) than warm fronts in
North China Plain (see Figure 8).

In conclusion, the asymmetry between the frequency and
intensity of cold and warm fronts contribute to the asymme-
try of daily mean temperature series in North China Plain.

Furthermore, we can compare statistics in the North
China Plain (the representative region in Figure 7b) with
those in the Northeast China Plain (from 45� to 48

�
N,

121.5 to 127.5�E):
North China Plain

• G ≈ 0.43 (significant and strong, see Figure 1d);
• The correlation between front events time series and

temperature asymmetry time series is −0.75 (front
events and temperature asymmetry are significantly
correlated, see Figure 7a);

• Cold fronts are much more frequent than warm fronts
(frequency ratio for cold fronts to warm ones is nearly
10:1, see Figure 5);

• Contributions of cold fronts to temperature variations are
much stronger than those of warm fronts (see Figure 8a).

Northeast China Plain

• G ≈ 0.47 (significant but weak, see Figure 1d);

• The correlation between front events time series and
temperature asymmetry time series is only +0.25 (front
events and temperature asymmetry are not signifi-
cantly correlated, see Figure 7a);

• Cold fronts are slightly more frequent than warm
fronts (frequency ratio is close to 3:2, see Figure 5);

• Cold fronts and warm fronts contribute almost equally
to temperature variations (figure not shown here).

We see that the stronger the asymmetry between the
frequency and intensity of cold and warm fronts is, the
stronger temperature asymmetry is. Therefore, fronts
do contribute to temperature asymmetry. Our results
confirm the conjecture that front events contribute to
temperature asymmetry. Our results are in agreement
with conclusions in previous studies (Ashkenazy et al.,
2008; Piskala and Huth, 2020), but more direct and
convincing evidences are presented here. Also, our
approach can be applied easily to regions other than
China.

However, we must point out that front events do not
account for temperature asymmetry in all regions and at
all pressure levels. For example, from Figures 1a and 5, we
see that the temperature asymmetry is quite strong over
the west of China, while front events are infrequent there.
What's more, although not strong, there are some regions
at 500 hPa pressure level (the light shading area in Figure
1f) with significant temperature asymmetry (p < .05 when
testing the significance). Since frontal zones seldom extend
to 500 hPa pressure level, the significant temperature
asymmetry at 500 hPa (and higher) pressure level is caused
by factors other than front events.

Besides, there are several further questions to answer.
For example, why do cold fronts have stronger meridional
nonlinear advection than warm fronts in North China
Plain? How does the intensity of temperature asymmetry
change in a warming climate? What factors cause such
change? All these problems deserve further research.
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